首页|基于折射反向学习机制的樽海鞘群算法

基于折射反向学习机制的樽海鞘群算法

扫码查看
由于樽海鞘群算法(SSA)容易陷入局部最优,导致算法收敛能力较差,为了提高算法的搜索性能,本文提出了一种基于折射反向学习的樽海鞘群算法rOSSA.算法根据折射反向学习在解空间中获得反向解,使搜索代理获得更多选择机会,增加算法找到更优解的可能性.此外,在折射反向学习中引入概率扰动机制,通过概率扰动机制使搜索代理在迭代后期能够跳出局部最优,从而增强算法的全局搜索能力.最后,通过9个单峰、多峰、复合测试函数和一个工程计算问题将rOSSA与近年提出的一些主流算法进行比较,实验结果有效证明了本文改进算法的有效性.
Salp Swarm Algorithm Based on Refracted Opposition-based Learning
Because the salp swarm algorithm(SSA)is easy to fall into local optimum,resulting in poor convergence ability of the algo-rithm,in order to improve the search performance of the algorithm,this paper proposes a salp swarm algorithm based on refracted op-position-based learning(rOSSA).Firstly,the search agent uses refracted opposition-based learning to obtain the opposite solution in the solution space,so as to obtain more choices and increase the possibility of the algorithm to find better solution.In addition,the probabilistic perturbation mechanism is introduced into the refracted opposition-based learning species,so that the search agent can jump out of the local optimum in the later iteration,so as to enhance the global search ability of the algorithm.Finally,rOSSA is com-pared with some mainstream algorithms through nine unimodal,multimodal,and composite test functions and an engineering calcula-tion problem,and the experimental results effectively demonstrate the effectiveness of the improved algorithm.

salp swarm algorithmsearch performancerefracted opposition-based learningprobabilistic perturbation

钱谦、翟豪、潘家文、冯勇、李英娜

展开 >

昆明理工大学信息工程与自动化学院,昆明 650500

昆明理工大学云南省计算机技术应用重点实验室,昆明 650500

樽海鞘群算法 搜索性能 折射反向学习 概率扰动

2025

小型微型计算机系统
中国科学院沈阳计算技术研究所

小型微型计算机系统

北大核心
影响因子:0.564
ISSN:1000-1220
年,卷(期):2025.46(1)