首页|LW-YOLOv7SAR:轻量SAR图像目标检测方法

LW-YOLOv7SAR:轻量SAR图像目标检测方法

扫码查看
针对SAR场景的小目标、多噪声、复杂等特征,以及舰船目标场景的优化轻量检测模型需求,基于YOLOv7-tiny框架裁剪与优化,提出了可用于SAR舰船图像的轻量检测网络LW-YOLOv7SAR.它通过重参数化和Shuffle技巧,并结合Ghost-Conv模块去除冗余信息的思想和方法,轻量化了模型,同时增强了模型多尺度信息提取的效率;为了便干部署和移植,模型使用易部署的激活函数hard-Swish和ReLU6.此外,在主干层引入结合空间通道注意力的软阈值化模块,增加了模型的去噪和泛化能力;为了提高小目标的检测精度,在模型中引入了加权的多尺度特征融合.经过理论分析和实验验证发现,对比YOLOv7-tiny,LW-YOLOv7SAR模型减少89%计算量、90%参数量、90%权重文件大小,由于减小了运算量,实现了模型推理时的功耗降低,因此也更符合绿色计算要求;在SSDD数据集上的检测准确率可达97.6%.
LW-YOLOv7SAR:Lightweight SAR Image Object Detection Method
Aiming at the characteristics of small targets,heavy noise,complexity in SAR scenarios,combined with the requirements of optimized lightweight detection models in ship target scenarios,we propose LW-YOLOv7SAR,a lightweight detection network for SAR ship image detection by pruning and optimization of the YOLOv7-tiny framework.It lightens the model through re-parameteriza-tion and Shuffle techniques,combined with GhostConv module and borrowing ideas and methods for removing redundant information.Meanwhile,it enhances the efficiency of multi-scale information extraction of the model.For ease of deployment and portability,the model uses easy-to-deploy activation functions such as hard-Swish and ReLU6.In addition,a soft thresholding module combined with spatial channel attention is introduced at the backbone layer to increase the denoising and generalization capabilities of the model.In order to improve the detection accuracy of small targets,a weighted multi-scale feature fusion module is introduced into the model.Through theoretical analysis and experimental verification,it is proved that the LW-YOLOv7SAR model reduces the calculation cost by 89%,the parameter amount by 90%,and the weight file size by 90%,compared with YOLOv7-tiny.Due to reducing the computa-tional demand,this model reduced power consumption during inference compared to the original model.Therefore it is also more in line with green computing requirements.The detection accuracy on the SSDD dataset can reach 97.6%.

YOLOv7-tinysynthetic aperture radarship detectionsmall object detectionsoft thresholdinglight-weight

邹珺淏、任酉贵、冷芳玲、鲍玉斌、张天成、于戈

展开 >

东北大学计算机科学与工程学院,沈阳 110819

辽宁省自然资源事务服务中心,沈阳 110032

YOLOv7-tiny 合成孔径雷达 舰船检测 小目标检测 软阈值化 轻量化

2025

小型微型计算机系统
中国科学院沈阳计算技术研究所

小型微型计算机系统

北大核心
影响因子:0.564
ISSN:1000-1220
年,卷(期):2025.46(1)