首页|改进YOLOpose的轻量化多人姿态检测模型

改进YOLOpose的轻量化多人姿态检测模型

扫码查看
二维人体姿态估计对安全生产、智能交互等研究都有重要的意义.针对目前的人体姿态估计模型计算量大、检测速度慢等问题,本文提出一种基于YOLOpose模型的轻量化改进算法.首先引入运算更精巧的GSConv卷积模块替换普通Conv卷积,大大降低模型计算量和复杂度;然后用CARAFE模块替换UPSample模块,完成上采样工作,同时引入CBAM注意力机制模块以避免模型轻量化带来的精度降低的问题.实验结果表明,YOLOpose模型经过上述轻量化改进后,模型体量降低为135.6MB,降低了约15.8%,GFLOPS降为了 86.9,降低了约15.0%,模型计算量显著降低,再加入CBAM注意力机制对模型精度影响较小,改进后模型既可以保证识别的准确度,又可以实现检测算法的轻量化.
Lightweight Multiplayer Pose Detection Model with Improved YOLOpose
2D human posture estimation is of great significance for safety production,intelligent interaction and other research.Aiming at the current human posture estimation model with large computation and slow detection speed,this paper proposes a lightweight im-provement algorithm based on the YOLOpose model.Firstly,the GSConv convolution module,which is more delicate in operation,is introduced to replace the ordinary Conv convolution,which greatly reduces the model computation and complexity;then the UPSample module is replaced by the CARAFE module to complete the up-sampling work,and at the same time,the CBAM attention mechanism module is introduced to avoid the problem of reduced accuracy brought by the model lightweighting.The experimental results show that after the YOLOpose model is improved by the above lightweighting,the model volume is reduced to 135.6MB,which is reduced by about 15.8%,and the GFLOPS is reduced to 86.9,which is reduced by about 15.0%,with a significant reduction in the model computation volume,and then the addition of the CBAM attention mechanism has a small effect on the model accuracy,and the im-proved model can ensure the accuracy of recognition and also realize the lightweight of the detection algorithm.

attitude estimationYOLOposelightweightingGSConv convolutionCARAFE module

张欣毅、张运楚、王菲、刘一铭

展开 >

山东建筑大学信息与电气工程学院,济南 250101

山东省智能建筑技术重点实验室,济南 250101

姿态估计 YOLOpose 轻量化 GSConv卷积 CARAFE模块

2025

小型微型计算机系统
中国科学院沈阳计算技术研究所

小型微型计算机系统

北大核心
影响因子:0.564
ISSN:1000-1220
年,卷(期):2025.46(1)