摘要
在构建以数据驱动为主要学习模式的深度神经网络模型过程中,如何有效辨识数据的安全风险已成为研究中的重要议题.数据安全风险识别面临的"黑盒"挑战,致使其难以被人类现有的认知结构完全理解,并对数据安全风险治理带来诸多影响.在厘清可解释人工智能的基本概念、可解释性是提高识别数据安全风险效率的基础需求、基于数据安全风险沟通的可解释人工智能范式的基础上,探讨可解释性强的深度学习模型和基于表征一致性技术的解释方法在数据安全风险识别中的具体应用.
基金项目
教育部产学合作协同育人项目(220505402254146)