摘要
针对立体车库中明暗变化显著、目标尺寸差异大等现象导致的裂缝识别准确度不高的问题,提出了一种基于改进YOLOv5网络的识别算法模型.该模型通过优化特征提取层和增加注意力机制,提高了对不同尺寸目标的识别能力,通过改进的特征融合层结构和检测层输出框尺寸,提升了识别精度.在立体车库结构裂缝数据集上的试验验证表明,该网络收敛速度快,在目标识别率和图像识别准确率方面都有所提升,识别精度高达95.4%,实现了立体车库结构裂缝的精准检测和定位,为高速、高精度的结构裂缝检测提供了理论基础,具有工程应用价值.
基金项目
济南市科技计划(后补助)项目社会民生专项(202131009)