首页|基于群智能优化的改进LightGBM算法及应用

基于群智能优化的改进LightGBM算法及应用

扫码查看
针对LightGBM(Light Gradient Boosting Machine)算法参数调整复杂的问题,提出了一种基于群智能优化的预测算法。该算法采用多种群智能优化方法,对LightGBM模型的关键超参数进行全面优化,包括树模型的最大深度、每棵树中叶子节点的最大数量、叶子节点所需的最小样本数、子样本比例、特征子采样比例以及学习率等。为验证算法的有效性,在心力衰竭疾病分类的实验数据上进行了测试,实验结果表明,改进后的LightGBM心力衰竭分类模型在稳定性和准确率等关键指标上均展现出显著优势,各项性能指标均优于K近邻算法、决策树以及基于网格搜索优化的LightGBM和基于随机搜索优化的LightGBM算法。
Improved LightGBM Algorithm Based on Swarm Intelligence Optimization and Application
A prediction algorithm based on swarm intelligence optimization is proposed to address the challenge of complex parameter tuning in the LightGBM(Light Gradient Boosting Machine)algorithm.This algorithm adopts multiple swarm in-telligence optimization methods to comprehensively optimize the key hyperparameters of the LightGBM model,including the maximum depth of the tree model,the maximum number of leaf nodes in each tree,the minimum number of samples required for leaf nodes,sub sample ratio,feature sub sampling ratio,and learning rate.To verify the effectiveness of the algorithm,experiments were conducted on experimental data for heart failure disease classification.The experimental results showed that the improved LightGBM heart failure classification model showed significant advantages in key indicators such as stability and accuracy,outperforming K-nearest neighbor algorithm,decision tree,grid search optimization based LightGBM,and random search optimization based LightGBM algorithm.

LightGBM modelswarm intelligence optimizationmodel selectionclassification of heart failure diseases

马巍巍、王咏梅

展开 >

合肥师范学院 计算机与人工智能学院,安徽 合肥 230061

LightGBM模型 群智能优化 模型选择 心力衰竭疾病分类

安徽省社会科学创新发展研究课题安徽省高等学校自然科学研究重点项目合肥师范学院校级重点科研项目

2023KY016KJ2021A09032022KJZD07

2024

新乡学院学报
新乡学院

新乡学院学报

影响因子:0.177
ISSN:2095-7726
年,卷(期):2024.41(6)