首页|非负矩阵Hadamard积谱半径上界的新估计式

非负矩阵Hadamard积谱半径上界的新估计式

扫码查看
研究了非负矩阵的谱半径,以矩阵的Geršgorin圆盘定理和Brauer卵形定理为基础,利用矩阵乘积与Hadamard积之间的双重运算结构及分配特性、相似矩阵特征值不变性得到了新的非负矩阵Hadamard积的谱半径上界的估计式。通过分析和比较探讨了基于圆盘形和卵形特征值包含集的新估计式之间的关系,并通过数值实验验证了新估计式的有效性和优越性。
A New Estimation of the Upper Bound of the Radius of the Non-negative Matrix Hadamard Product
The spectral radius of non negative matrices is studied,and based on the Geršgorin disk theorem and Brauer egg the-orem of matrices,a new estimation formula for the upper bound of the spectral radius of the Hadamard product of non negative matrices using the dual operation structure and allocation characteristics between matrix product and Hadamard product,as well as the invariance of the eigenvalues of similar matrices is obtained.The relationship between the new estimation formulas based on the inclusion sets of disc-shaped and oval shaped eigenvalues was analyzed and compared.The effectiveness and superiority of the new estimation formula were verified through numerical experiments.

non-negative matrixHadamard productspectral radius

陈子墨

展开 >

兰州交通大学数理学院,甘肃兰州 730070

非负矩阵 Hadamard积 谱半径

2024

新乡学院学报
新乡学院

新乡学院学报

影响因子:0.177
ISSN:2095-7726
年,卷(期):2024.41(12)