首页|Neumann边界扩散方程的源项及初值反演问题

Neumann边界扩散方程的源项及初值反演问题

扫码查看
研究了Neumann边界条件下扩散方程的源项与初值反演问题,针对该问题的不适定性,提出一种改进的Tikhonov正则化方法。根据给出的模型构建了相应的正问题,用有限差分法求出了该正问题的数值解。根据正问题和两个观测数据构建了相应的反问题,分析了该反问题的不适定性,在选取合适的正则化参数的前提下,分别导出了源项、初值的精确解与近似解之间的误差估计,并给出相关的证明。通过两个数值算例验证了所提方法的有效性。
Source Term and Initial Value Inversion Problem of Neumann Boundary Diffusion Equation
The source term and initial value inversion problem of diffusion equations under Neumann boundary conditions are investigated.A modified Tikhonov regularization method is proposed to address the unsuitability of this issue.A corresponding forward problem was constructed based on the given model,and the numerical solution of the forward problem was obtained using finite difference method.The corresponding inverse problem was constructed based on the forward problem and two ob-served data.The unsuitability of the inverse problem is analyzed,and under the premise of selecting appropriate regularization parameters.The error estimates between the exact and approximate solutions of the source term and initial value are derived,and relevant proofs are provided.The effectiveness of the proposed method was verified through two numerical examples.

regularized approximate solutionimproved Tikhonov regularization methoderror estimationsource terminitial value inversion problem

施芳、张应洪、刘雪林

展开 >

贵州师范大学数学科学学院,贵州贵阳 550025

正则化近似解 改进的Tikhonov正则化方法 误差估计 源项 初值反演问题

2024

新乡学院学报
新乡学院

新乡学院学报

影响因子:0.177
ISSN:2095-7726
年,卷(期):2024.41(12)