首页|大数据平台中基于深度学习的数据挖掘算法优化与系统设计

大数据平台中基于深度学习的数据挖掘算法优化与系统设计

Optimization and System Design of Data Mining Algorithms Based on Deep Learning in Big Data Platforms

扫码查看
在信息时代的快速发展背景下,大数据技术的广泛应用已经渗透各行各业,带来了海量的数据资源.然而,如何从这些数据中挖掘出有用的信息,为企业的决策提供支持,成为一个亟待解决的问题.文章旨在优化大数据平台的数据挖掘算法,并通过系统设计与技术实现,提升电力数据挖掘的准确性.采用算法优化方法包括模型压缩、参数调优和并行计算等,以提升深度学习模型的性能.基于此,文章提出构建高效、可扩展的数据挖掘平台.经过优化后,深度学习模型预测准确率在95%以上.此外,通过并行计算和分布式存储,数据挖掘平台的处理速度提高了 2倍,能够处理更大规模的数据集.优化方法的应用显著提升了模型的性能和平台的处理能力,为大数据挖掘提供了技术支持.
In the context of rapid development in the information age,the widespread application of big data technology has penetrated into various industries,bringing massive data resources.However,how to extract useful information from these data and provide support for enterprise decision-making has become an urgent problem to be solved.This study aims to optimize the data mining algorithms of big data platforms and improve the accuracy of power data mining through system design and technical implementation.Adopting algorithmic optimization methods including model compression,parameter tuning,and parallel computing to improve the performance of deep learning models.Based on this,an efficient and scalable data mining platform has been constructed.After optimization,the deep learning model has a prediction accuracy of over 95%.In addition,through parallel computing and distributed storage,the processing speed of data mining platforms has been doubled,enabling them to process larger datasets.The application of optimization methods has significantly improved the performance of the model and the processing ability of the platform,providing technical support for big data mining.

big data platformdeep learningdata mining algorithms

吴玉凤

展开 >

江苏航运职业技术学院,江苏南通 226000

大数据平台 深度学习 数据挖掘算法

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(1)
  • 5