首页|"一站式"学生社区的社交网络分析方法

"一站式"学生社区的社交网络分析方法

扫码查看
为了对线上学生社区进行社交网络分析,文章提出了一种基于学生社交数据的孤立者检测方法,旨在识别社交网络中可能存在的孤立者.文章设计了一个包含连接特征、活跃度特征和中心性特征的特征提取层,通过综合分析构建了学生特征向量.随后,采用多层感知机作为神经网络层,对学生特征进行数据挖掘,最终输出学生为社交孤立者的概率.最后,以Friendster数据集为基础进行了实验,结果表明所提方法的准确度、精确度、召回率等较高.
A Social Network Analysis Method for "One Stop" Student Community
In order to conduct social network analysis on online student communities,this paper proposes an outlier detection method based on student social data,aiming to identify potential outliers in social networks.This paper designs a feature extraction layer that includes connection features,activity features,and centrality features,and constructs student feature vectors through comprehensive analysis.Subsequently,a multi-layer perceptron is used as the neural network layer to mine student features and ultimately output the probability of students being social isolators.Finally,experiments are conducted on the basis of the Friendster dataset,and the results show that the proposed method has high accuracy,precision and recall rate.

student communitysocial isolationfeature extractionmulti-layer perceptron

缪炀、甘莉君

展开 >

无锡工艺职业技术学院,江苏无锡 214206

学生社区 社交孤立 特征提取 多层感知机

2023年度江苏高校哲学社会科学研究项目

2023SJSZ0522

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(1)
  • 10