首页|基于机器学习的网络攻击检测与防御方法研究

基于机器学习的网络攻击检测与防御方法研究

扫码查看
传统的网络攻击检测与防御方法存在求解精度低、收敛速度慢、易陷入局部最优解等问题.为提升网络安全技术水平、应对日益突出的非法网络数据攻击现象,文章将提出基于机器学习的网络攻击检测与防御方法,测试模型的性能,结果表明新方法的网络攻击检测与防御效果均显著优于传统方法,具有更好的安全防御效果.
Research on Network Attack Detection and Defense Methods Based on Machine Learning
Traditional network attack detection and defense techniques generally have the problems of low solution accuracy,slow convergence speed,and easy to fall into the local optimal solution.In order to improve the level of network security technology and cope with the increasingly prominent phenomenon of illegal network data attacks,the article proposes the network attack detection and defense technology based on machine learning,and tests the performance of the model design,and the results show that the network attack detection and defense effect of the new method is significantly better than that of the traditional method,and it has a better security and defense effect.

machine learningSupport Vector Machinecyber securitycyber attack detectioncyber attack defense

李永娜、张锐

展开 >

驻马店职业技术学院,河南驻马店 463000

机器学习 支持向量机 网络安全 网络攻击检测 网络攻击防御

2023年河南省终身教育专项课题和课程开发立项2024年度河南科技智库调研课题

豫教202370216HNKJZK-2024-26B

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(1)
  • 5