首页|基于大数据分析的电力调度数据异常自动检测方法

基于大数据分析的电力调度数据异常自动检测方法

扫码查看
为有效检测出电力调度数据异常,设计基于大数据分析的电力调度数据异常自动检测方法.首先利用大数据分析技术采集海量的电力调度数据,并构建时间序列模型;其次提取异常特征参数,表征数据波动性;最后更新数据集合,在异常检测器中创建多个子异常检测器,自动检测电力调度数据异常.实验结果表明,设计方法异常查全数和异常查准数分别为384和323,准确率较高.
Automatic Abnormal Detection Method of Power Dispatching Data Based on Big Data Analysis
In order to effectively detect anomalies in power dispatch data,a big data analysis based automatic anomaly detection method for power dispatch data is designed.Utilize big data analysis techniques to collect massive amounts of power dispatch data and construct a time series model.Extract abnormal feature parameters to characterize data volatility.Update the dataset and create multiple sub anomaly detectors in the anomaly detector to achieve automatic detection of anomalies in power dispatch data.The experimental results show that the design method has achieved a high accuracy rate of 384 and 323 for anomaly detection,respectively.

big datapower dispatchingdata anomalyautomatic detection

张传雪

展开 >

临沂市妇幼保健院,山东临沂 276000

电力调度 数据异常 自动检测 大数据

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(2)
  • 5