首页|基于改进遗传算法的云计算任务资源分配

基于改进遗传算法的云计算任务资源分配

Cloud Computing Task Resource Allocation Based on Improved Genetic Algorithm

扫码查看
云计算具有低延时、低能耗的特点,在智能制造环境下可以实现海量制造数据的实时分析及快速任务处理.以云计算资源分配为研究对象,提出一种改进的遗传算法,通过增加变异情况,并对同一基因片段点的不同变异情况做针对性的适应度函数分析,保留优秀的变异情况进入下一代.通过算例说明所提出的模型和算法均有效,无论是迭代次数还是任务完成时间都明显优于经典的遗传算法.
In view of the characteristics of low delay and low energy consumption of cloud computing,real-time analysis of massive manufacturing data and fast task processing can be realized in the intelligent manufacturing environment.On this basis,taking cloud computing resource allocation as the research object,an improved genetic algorithm is proposed.By adding variation cases,different variation cases of the same gene fragment point are analyzed by targeted fitness function,and the excellent variation cases are compared to enter the next generation.A numerical example shows that the proposed model and algorithm are effective,and both iteration times and task completion time are obviously better than the classical genetic algorithm.

cloud computingresource allocationgenetic algorithmintelligent manufacturing

王铮、刘星

展开 >

郑州航空工业管理学院管理工程学院,河南郑州 450000

云计算 资源分配 遗传算法 智能制造

河南省科技攻关计划

212102310057

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(2)
  • 10