首页|基于SVM的多维相似大数据分类系统设计

基于SVM的多维相似大数据分类系统设计

扫码查看
受大数据自身相似性的影响,传统数据分类方式的分类精度偏低,为此提出基于支持向量机(Support Vector Machine,SVM)的多维相似大数据分类系统设计研究.将MYC-JX8MMA7核心板作为系统设计的开发载体,构建SVM线性回归模型,通过构建一个回归平面,保障所有多维相似大数据与平面之间的距离均处于最小状态,利用待分类数据与最佳分类界面被标记样本之间的相似度,实现对数据的分类.在测试结果中,分类结果F1 Score稳定在0.82以上,明显优于对照组.
Design of a Multi-dimensional Similarity Big Data Classification System Based on SVM
Due to the similarity of big data itself,the classification accuracy of traditional data classification methods is low.Therefore,a design study on the multi-dimensional similarity big data classification system based on Support Vector Machine(SVM)is proposed.The MYC-JX8MMA7 core board as the development carrier of system design,build support vector machine linear regression model,by building a regression plane,and ensure all the multidimensional similar distance between big data and plane are in the minimum state,using the similarity of classification data and the best classification interface,between the data classification.In the test results,the classification result F1 Score was stable above 0.82,which was significantly better than the control group.

Support Vector Machine(SVM)multi-dimensional similarity big dataclassification systemMYC-JX8MMA7 core board

谷俐娴

展开 >

江西师范大学,江西南昌 330022

支持向量机(SVM) 多维相似大数据 分类系统 MYC-JX8MMA7核心板

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(2)
  • 8