首页|基于支持向量机的人体异常步态特征识别方法研究

基于支持向量机的人体异常步态特征识别方法研究

扫码查看
人体异常步态特征识别可分析个体的行走姿势和模式,推算身份信息及人体潜在的健康问题.基于此,文章系统阐述基于支持向量机(Support Vector Machine,SVM)的人体异常步态特征识别方法,分析SVM在处理步态数据方面的技术优势和实现过程,开展CASIA-B和OUMVLP数据集的测试实验,验证该方法在步态识别上的准确性比传统反向传播(Back Propagation,BP)神经网络更高,为复杂行为识别研究提供了新视角.
Research on Identifying Human Abnormal Gait Features Based on Support Vector Machine
Human abnormal gait feature recognition can analyze the walking posture and pattern of an individual,and deduce the identity information and potential health problems of the human body.Based on this,this paper systematically describes the human abnormal gait feature recognition method based on Support Vector Machine(SVM),analyzes the technical advantages and implementation process of SVM in processing gait data,and carries out test experiments on CASIA-B and OUMVLP datasets,verifying the significant improvement of this method compared with the traditional Back Propagation(BP)neural network in terms of gait recognition accuracy,with a view to providing a new perspective for the study of complex behavior recognition.In order to provide a new perspective for the research of complex behavior recognition.

Support Vector Machine(SVM)human abnormal gaitfeature recognitionmodel construction

杨莉杰

展开 >

陕西学前师范学院,陕西西安 710061

支持向量机(SVM) 人体异常步态 特征识别 模型构建

陕西省教育厅科研项目

18JK0194

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(2)
  • 5