首页|基于深度学习的广播信号自动分类研究

基于深度学习的广播信号自动分类研究

扫码查看
非法广播信号指未经国家无线电管理部门批准擅自设立的广播电台,这类信号会扰乱正常的无线电通信秩序.因此,提出了一种基于时频域特征提取和反向传播(Back Propagation,BP)神经网络的非法广播信号监测方法.该方法先使用时频域分析方法提取信号的特征,然后使用BP模型进行分类.在实验中,文章使用MATLAB生成模拟广播信号数据集,并对设计方法进行测试.结果表明,该方法的准确率、召回率和F1值均在99%以上,证明了该方法的正确性.
Research on Automatic Classification of Broadcast Signals Based on Deep Learning
Illegal broadcast signals refer to radio stations established without the approval of the national radio management department.Such signals can disrupt the normal radio communication order.Therefore,this paper proposes an illegal broadcast signal monitoring method based on time-frequency domain feature extraction and Back Propagation(BP)neural network.This method first uses the time-frequency domain analysis method to extract the characteristics of the signal,and then uses the BP model for classification.In the experiment,this article used MATLAB to generate a simulated broadcast signal data set and tested the method.The results show that the accuracy,recall rate and F1 value of this method all reach more than 99%,which proves the correctness of this method.

deep learningbroadcast signaltime-frequency domain feature extractionBack Propagation(BP)neural network

陈韬

展开 >

甘南州融媒体中心,甘肃甘南 747000

深度学习 广播信号 时频域特征提取 反向传播(BP)神经网络

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(2)
  • 8