首页|基于改进K-means聚类的指纹室内定位方法研究

基于改进K-means聚类的指纹室内定位方法研究

扫码查看
由于室内环境的复杂性和多变性,传统的指纹定位技术往往难以实现高精度的室内定位.文章提出了一种基于改进K-means聚类的指纹室内定位方法,通过引入肘部法则确定K值,聚类划分离线位置的指纹数据库,改善了 K-means聚类的效果,并在聚类和定位过程中对离群点进行检测修正,进一步提升定位精度.经实验结果比较与分析,本文方法相较于未聚类修正前,定位误差由3.7 m降至1.8 m,有效提升了定位精度.
Research on Indoor Fingerprint Localization Method Based on Improved K-Means Clustering
Due to the complexity and variability of indoor environments,traditional fingerprint positioning techniques often struggle to achieve high-precision indoor positioning.This article proposes a fingerprint indoor positioning method based on improved K-means clustering.By introducing the elbow method to determine the K value,the offline position fingerprint database is clustered and divided,improving the effectiveness of K-means clustering.Outliers are detected and corrected during both clustering and positioning processes,further improving positioning accuracy.After comparing and analyzing the experimental results,the method proposed in this paper reduces the positioning error from 3.7 m to 1.8 m compared to before clustering correction,effectively improving the positioning accuracy.

indoor positioningelbow ruleK-meanspositioning accuracy

吴璇、尧舒引

展开 >

江西科技学院,江西南昌 330098

室内定位 肘部法则 K-means 定位精度

江西科技学院校级自然科学一般项目

23ZRYB04

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(2)
  • 6