首页|基于深度强化学习的数字电网数据安全迁移研究

基于深度强化学习的数字电网数据安全迁移研究

扫码查看
数字电网数据时序均值在冗余状态下的动态发展特点,导致迁移过程中难以有效控制丢包率.为此,文章提出基于深度强化学习的数字电网数据安全迁移研究.从集群(Cluster)角度入手,开展基于深度强化学习数字电网数据建模,明确在数字电网集群Queue存在空位的情况下集群的具体状态.在具体的迁移过程中,引入纹理基元理论,计算得到数字电网数据在阈值范围内的变化特征后,为数字电网数据迁移设置敏感度参数,构建数字电网数据迁移函数.在此测试结果中,整个迁移过程的丢包率仅为6.75%,具体迁移过程中各个阶段的最高丢包率仅为2.03%.
Research on Digital Grid Data Security Migration Based on Deep Reinforcement Learning
Due to the dynamic development characteristic of digital power grid data timing mean in the state of redundancy,it is difficult to effectively control the packet loss rate in the migration process.Therefore,the study on digital power grid data security migration based on deep reinforcement learning is proposed.From the perspective of cluster(Cluster),the digital grid data modeling based on deep reinforcement learning is carried out,which defines the specific state of the cluster in the case of vacancies in the digital grid cluster Que.In the specific migration process,the texture basis theory is introduced.After calculating the change characteristics of the digital grid data within the threshold range,the sensitivity parameters are set for the digital grid data migration,and the digital grid data migration function is constructed.In this test results,the packet loss rate of the whole migration process is only 6.75%,and the highest packet loss rate in each stage of the specific migration process is only 2.03%.

deep reinforcement learningdigital grid datasecure migrationdigital grid clustertexture basis element theorythreshold rangesensitivity parameters

肖嘉丽、蔡玲嘉、黄玉昆、吴伟忠、钟敏

展开 >

广东电网有限责任公司,广东广州 510000

深度强化学习 数字电网数据 安全迁移 数字电网集群 纹理基元理论 阈值范围 敏感度参数

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(2)
  • 9