首页|基于深度学习的图像超分辨率重建优化研究

基于深度学习的图像超分辨率重建优化研究

扫码查看
文章以图像超分辨率重建为研究对象,围绕深度学习方法中的超分辨率卷积神经网络(Super Resolution Convolutional Network,SRCNN)展开研究,同时引入基于正则化的优化方法.文章首先对SRCNN的基本框架进行深入研究,其次提出一种正则化优化方法,最后采用DIV2K数据集验证优化方法在图像重建任务中的有效性.实验结果表明,采用正则化优化的SRCNN在保真度和结构相似性方面均取得了显著提升.
Research on Image Super-Resolution Reconstruction Optimization Based on Deep
This paper takes image super-resolution reconstruction as the research object,focuses on the super-resolution convolutional neural network in the deep learning method,and introduces an optimization method based on regularization.This paper firstly studies the basic framework of Super Resolution Convolutional Network(SRCNN),then proposes a regularization optimization method,and finally uses the DIV2K data set to verify the effectiveness of the optimization method in the image reconstruction task.The experimental results show that SRCNN using regularization optimization has achieved significant improvements in both fidelity and structural similarity.

super-resolution reconstructionSuper Resolution Convolutional Network(SRCNN)regularization

滕延魁

展开 >

郑州工业应用技术学院,河南郑州 451100

超分辨率重建 超分辨率卷积神经网络(SRCNN) 正则化

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(3)
  • 11