首页|基于特征融合的脑电通道选择方法

基于特征融合的脑电通道选择方法

扫码查看
为了更准确地进行癫痫预测,提出基于特征融合的脑电通道选择算法.将样本熵、排列熵和方差特征根据脑电电极位置进行特征融合,融合特征作为脑电通道选择算法的输入进行癫痫预测.结果表明,融合特征在使用9个脑电通道的情况下得到96.74%的准确率和0.93的适应度函数值,远高于其他特征组合.
EEG Channel Selection Method Based on Feature Fusion
In order to predict epilepsy more accurately,an algorithm of EEG channel selection based on feature fusion is proposed.The sample entropy,permutation entropy,and variance features are fused based on the position of electroencephalogram electrodes,and the fused features are used as inputs for the electroencephalogram channel selection algorithm for epilepsy prediction.The results show that the fused features achieved an accuracy of 96.74%and a fitness function value of 0.93 when using 9 electroencephalogram channels,which is much higher than other feature combinations.

predict epilepsyfeature fusionelectroencephalogram channel selection

王飞龙、王海洋、孙永欣、高昭洪

展开 >

吉林化工学院,吉林吉林 132022

白城师范学院,吉林白城 137000

癫痫预测 特征融合 脑电通道选择

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(3)
  • 5