首页|基于深度学习的网络入侵检测与应对策略研究

基于深度学习的网络入侵检测与应对策略研究

扫码查看
文章针对网络安全领域中 日益复杂的攻击手段和难以检测的入侵行为,提出基于深度学习的网络入侵检测与应对策略.实验结果表明,长短期记忆网络(Long Short-Term Memory Network,LSTM)在处理复杂的网络流量数据时表现最优,优于卷积神经网络(Convolutional Neural Network,CNN)、循环神经网络(Recurrent Neural Network,RNN).
Research on Network Intrusion Detection and Response Strategies Based on Deep Learning
This article proposes a deep learning based network intrusion detection and response strategy to address the increasingly complex attack methods and difficult to detect intrusion behaviors in the field of network security.The experimental results show that Long Short Term Memory Network(LSTM)performs the best in handling complex network traffic data,outperforming Convolutional Neural Network(CNN)and Recurrent Neural Network(RNN).

deep learningnetwork securityintrusion detection

冯志伟

展开 >

安徽省人民政府网管理中心,安徽合肥 340000

深度学习 网络安全 入侵检测

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(3)
  • 1
  • 10