首页|基于神经网络的大数据分析在智慧交通中的应用

基于神经网络的大数据分析在智慧交通中的应用

扫码查看
为提升交通流量预测的准确性和效率,研究基于神经网络的大数据分析在智慧交通中的应用.首先深入探讨智慧交通系统的整体架构,其次研究基于层归一化的循环神经网络(Recurrent Neural Network,RNN)优化方法,最后进行实验分析.实验结果表明,所提方法的均方根误差(Root Mean Squared Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)明显优于传统标准RNN方法.
Application of Big Data Analysis Based on Neural Network in Smart Transportation
To improve the accuracy and efficiency of traffic flow prediction,the application of big data analysis based on neural networks in smart transportation is studied.Firstly,we will delve into the overall architecture of smart transportation systems.Secondly,we will study the optimization method of Recurrent Neural Network(RNN)based on layer normalization.Finally,conduct experimental analysis.The experimental results show that the Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)of the proposed method are significantly better than traditional standard RNN methods.

Recurrent Neural Network(RNN)layer normalizationtraffic flowdata analysis

林建平

展开 >

江西省通信产业服务有限公司,江西南昌 330009

循环神经网络(RNN) 层归一化 交通流量 数据分析

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(4)
  • 10