首页|基于学习矢量量化神经网络的交通标识识别技术研究

基于学习矢量量化神经网络的交通标识识别技术研究

扫码查看
传统交通标识识别技术需要大量数据做训练且对输入数据的要求较高,导致识别结果误差较大,为此,提出基于学习矢量量化神经网络的交通标识识别技术.将预处理交通标识图像作为待识别数据集,构建学习矢量量化神经网络模型,输入待识别图像进行学习与训练后,输出交通标识类别的识别结果,实现交通标识识别.实验结果表明,所设计技术的交通标识识别率高达98.77%,验证了该技术的有效性与正确性.
Research on Traffic Sign Recognition Technology Based on Learning Vector Quantitative Neural Network
Because the traditional traffic sign recognition technology needs a lot of data for training and requires high input data,which leads to a large error in recognition results.Therefore,a traffic sign recognition technology based on learning vector quantization neural network is proposed.The preprocessed traffic sign images are taken as the data set to be recognized,and the learning vector quantization neural network model is constructed.After inputting the images to be recognized for learning and training,the recognition results of traffic sign categories are output to realize the recognition of traffic sign.The experimental results show that the recognition rate of traffic signs under the designed technology is as high as 98.77%,which proves the effectiveness and correctness of the technology.

learning vector quantitative neural networktraffic recognitionrecognition technology

丁志成、赵雷雷

展开 >

郑州工业应用技术学院机电工程学院,河南郑州 451100

学习矢量量化神经网络 交通标识 标识识别

河南省工程技术研究中心项目&&&&

豫科实20221号2023YB007郑工教[2022]5号

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(4)
  • 6