首页|基于迁移学习的智慧城市物联网安全特征推断研究

基于迁移学习的智慧城市物联网安全特征推断研究

扫码查看
在智慧城市物联网中,由于成本的限制,安全态势感知软雷达节点安装稀少,其安全态势感知覆盖范围和粒度都受到了限制,安全感知精度较低.为推断安全态势感知设备无法覆盖的空置区域潜在的安全特征及提高安全识别进精度,设计了一种基于移动设备软雷达的智慧城市物联网安全态势感知评估框架,提出了基于迁移学习的安全潜在特征推断算法,保障智慧城市物联网的安全运行.
Security Feature Inference of Smart City Internet of Things Based on Transfer Learning
In the smart city Internet of Things,due to the limitation of cost,the security situation awareness soft radar nodes are installed sparsely,and its security situation awareness coverage and granularity are also limited,and the security perception accuracy is low.In order to infer the potential security features of the vacant area that cannot be covered by the security situation awareness equipment and improve the accuracy of security identification,the author designed a smart city Internet of Things security situation awareness evaluation framework based on mobile device soft radar,proposed a security potential feature inference algorithm based on transfer learning,and guaranteed the safe operation of smart city Internet of Things.

Internet of Thingsnetwork securitysecurity situation awarenesstransfer learning

李俊蓉、陈高翔、应贤儿、刘建华、朱子豪

展开 >

绍兴文理学院机械与电气工程学院,浙江绍兴 312000

物联网 网络安全 安全态势感知 迁移学习

绍兴文理学院校级学生科研课题(2022)大学生创新创业训练计划(2023)

202310349030

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(4)
  • 7