首页|基于深度学习的大数据时空序列挖掘方法

基于深度学习的大数据时空序列挖掘方法

扫码查看
针对时空序列挖掘任务中的诸多挑战,文章提出一种基于L2正则化的长短期记忆网络(Long Short-Term Memory,LSTM)方法,旨在增强传统LSTM模型在长短时序列中的建模能力.首先,分析了大数据时空序列挖掘方法的框架,包括数据输入、数据预处理、深度学习模型、正则化优化及数据挖掘结果.其次,介绍了 LSTM的基本原理和基于正则化的LSTM优化方法.最后,使用数据集对所提出的方法进行验证和评估.实验结果表明,该方法在时空序列挖掘任务中具有显著的优势,为解决时空序列挖掘问题提供了一种有效的方法.
Research on Big Data Spatiotemporal Sequence Mining Method Based on Deep Learning
In response to the many challenges in spatiotemporal sequence mining tasks,this article proposes a Long Short Term Memory(LSTM)method based on L2 regularization,aiming to enhance the modeling ability of traditional LSTM models in long short time sequences.Firstly,the framework of big data spatiotemporal sequence mining methods was analyzed,including data input,data preprocessing,deep learning models,regularization optimization,and data mining results.Secondly,the basic principles of LSTM and regularization based LSTM optimization methods were introduced.Finally,validate and evaluate the proposed method using a dataset.The experimental results show that this method has significant advantages in spatiotemporal sequence mining tasks,providing an effective method for solving spatiotemporal sequence mining problems.

deep learningspatiotemporal sequenceexcavate

张峰

展开 >

江苏联合职业技术学院宿迁开放大学办学点,江苏宿迁 223800

江苏省宿迁中等专业学校,江苏宿迁 223800

深度学习 时空序列 挖掘

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(5)