首页|基于边缘计算和深度学习的跑步机运动监测系统

基于边缘计算和深度学习的跑步机运动监测系统

扫码查看
文章为跑步机运动爱好者提供了一种智能监测解决方案,提供全面的运动分析和指导.系统结合人脸心率监测和跑步姿态识别功能,通过摄像头采集用户的视频数据,实现非接触式的心率监测,为用户提供实时的生理信息,以优化运动强度和节奏;采用深度学习算法,识别跑步者的关键姿态元素,如肩膀平衡、手臂摆动和落地姿态,以改善跑步姿势和减少运动风险.这项研究将边缘计算和深度学习技术有机结合,为运动健康领域的创新提供了新的方向和机会.
Treadmill Motion Monitoring System Based on Edge Computing and Deep Learning
This article provides an intelligent monitoring solution for treadmill enthusiasts,providing comprehensive motion analysis and guidance.The system combines facial heart rate monitoring and running posture recognition functions,and collects user video data through a camera to achieve non-contact heart rate monitoring,providing users with real-time physiological information to optimize exercise intensity and rhythm;A deep learning algorithm is used to identify key posture elements of runners,such as shoulder balance,arm swing,and landing posture,to improve running skills and reduce exercise risks.This research organically combines edge computing and deep learning technology,providing new directions and opportunities for innovation in the field of sports health.

edge computingdeep learningmotion monitoring

陈祥

展开 >

江苏师范大学科文学院,江苏徐州 221132

边缘计算 深度学习 运动监测

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(5)