首页|一种GRU结合CNN的网络流量分类算法研究

一种GRU结合CNN的网络流量分类算法研究

扫码查看
循环神经网络(Recurrent Neural Network,RNN)结合卷积神经网络(Convolutional Neural Network,CNN)的混合算法在流量分类问题上的表现往往优于单一深度学习算法.文章基于CICIDS2017的原始流量数据,先进行预处理,再利用CNN模型学习数据流的空间特征,将数据流中所有数据包的CNN输出作为门控循环单元(Gated Recurrent Unit,GRU)的输入,学习网络流的时间特征,最后通过Softmax分类器获得分类结果.经过测试,在此数据集下,提出的双网络结合算法可以在更少的步数内达到数据流量分类的高准确率.
Research on a Network Traffic Classification Algorithm Based on GRU and CNN
In many cases,the accuracy of the hybrid algorithm of Recurrent Neural Network(RNN)combined with Convolutional Neural Network(CNN)is better than that of a single deep learning algorithm in traffic classification.Based on the original traffic data of CICIDS2017,this paper preprocesses the data first,and uses the CNN model to learn the spatial characteristics of the data flow.Then the CNN output of all packets in the stream is used as the input of the Gated Recurrent Unit(GRU)to learn the time characteristics of the network stream.Finally,the classification result is obtained through the Softmax classifier.After testing,the dual-network combination algorithm proposed in this paper can achieve high accuracy of data traffic classification with fewer steps in this data set.

traffic classificationdeep learningGated Recurrent Unit(GRU)Convolutional Neural Network(CNN)

杨永平、王思婷

展开 >

北京师范大学珠海分校信息技术学院,广东珠海 519087

北京邮电大学,北京 100876

流量分类 深度学习 门控循环单元(GRU) 卷积神经网络(CNN)

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(6)