首页|基于改进InfoGAN的三维多孔介质重构及软件实现

基于改进InfoGAN的三维多孔介质重构及软件实现

扫码查看
在多孔介质三维重建中,采用传统深度学习方法会造成模式坍塌,导致图像多样性不高,与原始样本差距较大.针对此问题,提出一种基于改进InfoGAN的多孔介质三维重建模型.该模型采用无监督学习,生成器中的随机噪声改为高斯噪声,判别器部分将单判别器改为双判别器,分别采用BCELoss和MSELoss作为训练的判别器.分类器在判别器的基础上对多孔介质类型进行分类,从而进行不同岩性的重建工作.在学习率方面,采用双时间尺度更新规则,即生成器和判别器的学习率使用不同的学习率.最后通过孔隙度实验,与改进前及其他数字多孔介质重建算法做对比,构建出与原始多孔介质样本具有更接近拓扑结构的数字多孔介质.
Reconstruction and Software Implementation of Three-dimensional Porous Media Based on Improved InfoGAN
In the core 3D reconstruction,the existing deep learning methods will cause model collapse,resulting in low image diversity.To solve this problem,a 3D core reconstruction model based on improved InfoGAN is proposed.The model adopts unsupervised learning,the random noise in the generator is changed to Gaussian noise,and the original single discriminator is changed to double discriminator in the discriminator part.BCELOSS and MSELOSS are respectively used as the discriminators for training.The classifier classifies the core type on the basis of the discriminator,so that the subsequent reconstruction of different lithologies can be carried out.In the aspect of learning rate,dual time scale update rule is used,that is,learning rate of generator and discriminator is different.Finally,through porosity experiment and comparison with previous improvement and other 3D reconstruction algorithms,the digital core with more similar topological structure to the original core sample is constructed.

improve InfoGAN3D reconstructiondigital porous media

唐亮、饶佳宝

展开 >

西南石油大学计算机科学学院,四川成都 610500

改进InfoGAN 三维重建 数字多孔介质

2024

信息与电脑
北京电子控股有限责任公司

信息与电脑

影响因子:1.143
ISSN:1003-9767
年,卷(期):2024.36(6)