首页|基于动态权重模型的数据不平衡SEI方法

基于动态权重模型的数据不平衡SEI方法

扫码查看
针对辐射源个体识别(SEI)中个体数据分布不平衡导致的识别准确率下降的问题,提出一种基于动态权重模型的SEI方法。通过设计一个动态类权重(DCW)模型,先利用元学习算法使用少量样本数据通过2层计算得到一个适中的权重初始值;再设计一种新的代价敏感损失函数计算预测值与真实值之间的距离,反向调整赋予少数类的学习权重,适度增加对少数类数据的重视程度。对少数类更加友好,对高度不平衡数据的处理有明显优势,缓解多数类样本对整个识别过程的计算误导,提高整体的识别正确率。
Data imbalance SEI method based on dynamic weight model
To tackle with the problem of decreased recognition accuracy caused by imbalanced individual data distribution in Specific Emitter Identification(SEI),a dynamic weight model based method is proposed for individual identification of radiation sources.A Dynamic Class Weight(DCW)model is built.A moderate initial weight value is obtained by using a meta learning algorithm through two-layer calculation with a small amount of sample data.Then,a new cost sensitive loss function is designed to calculate the backward adjustment of the distance between the predicted value and the true value,which gives the minority learning weight,and moderately increases the attention to the minority data.It is more friendly to the minority.It has obvious advantages in the processing of highly unbalanced data,which alleviates the calculation misleading of the majority of samples in the whole recognition process,thus improving the overall recognition accuracy.

Specific Emitter Identificationunbalanced dataDynamic Class Weightsmeta learningcost sensitive losses

段可欣、闫文君、刘凯、张建廷、李春雷、王艺卉

展开 >

海军航空大学 信息融合研究所,山东 烟台 264001

91422部队,山东 烟台 265200

海军研究院,北京 100071

92038部队,山东 青岛 266109

31401部队,山东 烟台 264099

展开 >

辐射源个体识别 不平衡数据 动态类权重 元学习 代价敏感损失

国家自然科学基金面上资助项目国家自然科学基金面上资助项目电磁空间安全全国重点实验室开放基金资助项目

6227149962371465

2024

太赫兹科学与电子信息学报
中国工程物理研究院电子工程研究所

太赫兹科学与电子信息学报

CSTPCD
影响因子:0.407
ISSN:2095-4980
年,卷(期):2024.22(2)
  • 22