太赫兹科学与电子信息学报2024,Vol.22Issue(9) :1044-1050.DOI:10.11805/TKYDA2023413

集成侧墙技术的80 nm栅GaN HEMT

80 nm T-gate GaN HEMT with integrated sidewall technology

孔欣
太赫兹科学与电子信息学报2024,Vol.22Issue(9) :1044-1050.DOI:10.11805/TKYDA2023413

集成侧墙技术的80 nm栅GaN HEMT

80 nm T-gate GaN HEMT with integrated sidewall technology

孔欣1
扫码查看

作者信息

  • 1. 中国电子科技集团公司 第二十九研究所,四川 成都 610036
  • 折叠

摘要

目前业界主要采用电子束曝光技术制作高频氮化镓高电子迁移率晶体管(GaN HEMT)的深亚微米T型栅,存在效率低下、良率不足和成本较高的问题.本文采用集成侧墙技术,在6英寸工业化产线上首次成功制造了纯光学曝光的80 nm T型栅GaN HEMT,并对器件性能参数进行了全面表征和分析.器件单位栅宽(每毫米)下,最大输出电流Id,max为993 mA,峰值跨导Gm,peak为385 mS;阈值电压Uth为-3.25 V,关态击穿电压超过80 V;电流增益截止频率(fT)和功率增益截止频率(fmax)分别为64 GHz和175 GHz.在28 V工作时,器件在16 GHz下的饱和输出功率、功率增益和功率附加效率分别为26.95 dBm(每毫米4.9 W)、11.08 dB和49.78%;在30 GHz下器件的饱和输出功率、功率增益和功率附加效率分别为26.15 dBm(每毫米4.1 W)、8.8 dB和44%.结果表明,集成侧墙技术在深亚微米GaN HEMT制造中具备较好的应用前景.

Abstract

As the main-stream technology to fabricate the deep-submicron T-gates of high-frequency GaN HEMT(High Electron Mobility Transistor)in industry,electron beam lithography faces the problems of low efficiency,insufficient yield,and high cost.In this paper,an 80 nm T-gate GaN HEMT with pure optical exposure has been successfully manufactured for the first time on a 6-inch industrial production line using integrated side wall technology,and the performance parameters of the device are comprehensively characterized and analyzed.The device displays a maximum output current per unit(millimeter)gate width of 993 mA,a peak transconductance of per unit(millimeter)gate width 385 mS,a threshold voltage of-3.25 V,an off-state breakdown voltage exceeding 80 V,and a fT/fmax of 64/175 GHz.When operated at 28 V,the saturated output power,the associated power gain,and the power added efficiency of the device at 16 GHz are 26.95 dBm(4.9 W per millimeter),11.08 dB,and 49.78%respectively;while at 30 GHz,these data are 26.15 dBm(4.1 W per millimeter),8.8 dB,and 44%respectively.The results show that the integrated sidewall technology has a good application prospect in deep-submicron GaN HEMT manufacturing.

关键词

氮化镓高电子迁移率晶体管/光学栅/侧墙/短沟道效应/深亚微米

Key words

GaN High Electron Mobility Transistor/optical gate/sidewall/short channel effect/deep-submicron

引用本文复制引用

出版年

2024
太赫兹科学与电子信息学报
中国工程物理研究院电子工程研究所

太赫兹科学与电子信息学报

CSTPCD
影响因子:0.407
ISSN:2095-4980
参考文献量3
段落导航相关论文