首页|基于局部与全局描述符紧耦合联合决策的机器人分层式视觉位置识别方法

基于局部与全局描述符紧耦合联合决策的机器人分层式视觉位置识别方法

扫码查看
视觉位置识别是移动机器人维持高精度定位和维护地图一致性的重要手段.然而,受视点和外观变化的双重干扰,位置识别问题仍然极具挑战性.本文提出了一种基于局部与全局描述符紧耦合联合决策的分层式视觉位置识别方法.该方法基于多任务知识蒸馏来学习描述符提取能力.经过良好训练的轻量化模型以紧耦合的形式同时提取图像的全局和局部描述符,并进一步实现局部描述符的二值化表示和词袋空间映射.在所构建的位置识别架构中,提出了分层式识别策略进行由粗到精的位置检索,并基于相位相关法分配全局和局部描述符的联合决策权重.在多项基准数据集上的评估结果证实,所提方法在可接受的匹配效率下实现了匹配性能的显著提升,在多种复杂环境下表现出较强的泛化性和鲁棒性.
Hierarchical Visual Place Recognition Approach for Robots Based on Joint Decision-making of Tightly-coupled Local and Global Descriptors
Visual place recognition(VPR)is an important means for mobile robots to maintain high-pre-cision localization and map consistency.However,due to the interference of viewpoint and appear-ance changes,the VPR problem remains extremely difficult.We propose a hierarchical VPR meth-od based on joint decision-making of tightly coupled local and global descriptors.The proposed ap-proach learns the ability to extract descriptors based on knowledge distillation.The well-trained lightweight model extracts global and local descriptors of an image in a tightly coupled form,fur-ther converts local descriptors into a binary representation,and maps it to the Bag of Visual Words space.In the constructed VPR architecture,a hierarchical recognition strategy is presented for coarse-to-fine place retrieval and a phase-correlation-based approach is employed to assign the joint decision weights of global and local descriptors.The evaluation results on several benchmark datasets confirm that the proposed approach achieves a significant improvement in performance with acceptable matching efficiency and exhibits strong generalization and robustness in various complex environments.

visual place recognitionloop closure detectiondeep learningvisual SLAMscene recognition

李康宇、王西峰、朱守泰

展开 >

中国机械科学研究总院集团有限公司,北京 100037

机科发展科技股份有限公司,北京 100037

北京交通大学,北京 100091

视觉位置识别 闭环检测 深度学习 视觉SLAM 场景识别

国家重点研发计划项目

2020YFB1313304

2024

信息与控制
中国自动化学会 中国科学院沈阳自动化研究所

信息与控制

CSTPCD北大核心
影响因子:0.576
ISSN:1002-0411
年,卷(期):2024.53(3)
  • 5