首页|高校高价值专利技术机会识别研究——以"生成式人工智能"领域为例

高校高价值专利技术机会识别研究——以"生成式人工智能"领域为例

扫码查看
提出一种高校高价值专利技术机会识别方法,使用主题建模、突变级数法、机器学习与离群值检测算法,在评估出高校高价值专利的基础上,进一步识别出具有潜在技术机会的技术主题与专利技术.以"生成式人工智能"领域为例进行实证,研究结果表明:"生成式人工智能"领域的潜在技术主题集中在深度学习、神经网络与机器学习等前沿领域,AI影像、AI诊疗等技术为该领域的潜在技术机会,且上述技术均有国家相关政策大力支撑.本研究方法突破了单一技术机会识别方法识别结果针对性不强、识别专利价值不大、识别结果形式较为单一等核心问题,相关识别结果可以为高校技术转移、技术研发与技术创新提供决策支撑.
Identifying Technology Opportunities from High-Value Patents in Universities:The Case of Generative Artificial Intelligence
This study proposes a method for identifying technological opportunities of high-value patents in colleges and universities,using theme modeling,mutation level method,machine learning and outlier detec-tion algorithms to further identify technological themes and patented technologies with potential technological opportunities on the basis of evaluating high-value patents in colleges and universities.Taking the field of"Generative Artificial Intelligence"as an example for empirical evidence,the results show that the potential technology themes in the field of"Generative Artificial Intelligence"are centered on cutting-edge areas such as deep learning,neural networks and machine learning,and AI imaging and AI diagnosis and treatment are potential technological opportunities in this field,and the above technologies are vigorously supported by rel-evant national policies.This method can break through the core problems such as poor targeting of the iden-tification results of a single technology opportunity identification method,low value of the identified patents,and a single form of the identification results,and the relevant identification results can provide decision-making support for the technology transfer,technology research and development,and technological innova-tion of universities.

High-value patentsPatent valuationTechnology opportunity identificationCatastrophe progression methodLocal outlier factor

冉从敬、李旺、黄文俊

展开 >

武汉大学信息管理学院,武汉,430072

高价值专利 专利价值评估 技术机会识别 突变级数法 离群值检测算法

国家社会科学基金青年项目国家自然科学面上项目山东省自然科学基金青年项目

23CTQ02872274084ZR2023QG105

2024

信息资源管理学报
中国高校科技期刊研究会,武汉大学

信息资源管理学报

CSSCICHSSCD
影响因子:0.885
ISSN:2095-2171
年,卷(期):2024.14(4)