首页|基于YOLOv7-tiny改进的口罩佩戴检测算法YOLOv7-DSC

基于YOLOv7-tiny改进的口罩佩戴检测算法YOLOv7-DSC

扫码查看
针对密集人群下口罩佩戴检测实时性差、难以部署到移动端的问题,提出基于YOLOv7-tiny改进的口罩佩戴检测算法YOLOv7-DSC。该算法结合深度可分离卷积改进的SE注意力机制设计了一种轻量化特征提取模块,并结合BiFPN设计了一种加权特征融合模块。经实验验证,YOLOv7-DSC算法在口罩数据集上mAP为96。9%,与YOLOv7-tiny算法相比仅降低了 0。5%;相比于YOLOv3-ti-ny、YOLOv4-tiny、YOLOv5s、MobileNetV3、ShuffleNetV2、GhostNet 和 Swin-Transformer 算法在 mAP 上分别高出 13。4%、11。2%、4。5%、5。7%、5。8%、4。2%和 5。1%;在检测精度与 YOLOv7-tiny 算法相当的情况下,参数量和计算量分别减少了 60%和55%,仅为2。4 M和6。0 G,极大地降低了硬件成本。
Improved mask wearing detection algorithm YOLOv7-DSC based on YOLOv7-tiny
This paper proposes an improved mask wearing detection algorithm YOLOv7 DSC based on YOLOv7 tiny to address the problems of poor real-time performance and difficulty in deploying masks to mobile devices in dense crowds.This algorithm combines the SE attention mechanism improved by deep separable convolution to design a lightweight feature extraction module,and combines BiFPN to design a weighted feature fusion module.Through ex-perimental verification,the mAP of YOLOv7-DSC algorithm on the mask data set is 96.9%,which is only 0.5%lower than that of YOLOv7-tiny algorithm.Compared with the YOLOv3-tiny,YOLOv4-tiny,YOLOv5s,Mobile-NetV3,ShuffleNetV2,GhostNet and Swin-Transformer algorithms,the mAP is 13.4%,11.2%,4.5%,5.7%,5.8%,4.2%,and 5.1%higher,respectively;When the detection accuracy is comparable to that of YOLOv7-tiny al-gorithm,the number of parameters and computation are reduced by 60%and 55%,respectively,to only 2.4M and 6.OG,which greatly reduces the hardware costs.

mask wearing detectionYOLOv7-tinyYOLOv7-DSClightweight networkattention mechanismfea-ture fusion

陈辉、陈成

展开 >

安徽理工大学 计算机科学与工程学院,安徽 淮南 232001

口罩佩戴检测 YOLOv7-tiny YOLOv7-DSC 轻量化网络 注意力机制 特征融合

国家自然科学基金安徽省重点教学研究项目

611700602020jyxm0458

2024

新余学院学报
新余学院

新余学院学报

影响因子:0.18
ISSN:2095-3054
年,卷(期):2024.29(2)
  • 30