首页|复杂盒形件拉深气胀精确热成形工艺

复杂盒形件拉深气胀精确热成形工艺

扫码查看
针对复杂盒形零件一次拉深成形不足的问题,提出了一种拉深气胀复合精确热成形工艺,其成形零件的外形及壁厚均满足设计要求.以TC2钛合金复杂盒形件为研究对象,研究了 TC2钛合金在550~800 ℃和0.001~0.1 s-1条件下的高温成形性能.设计了一套可一次性完成拉深、气胀的模具.基于有限元仿真模拟软件PAM-STAMP对零件成形过程进行模拟,获得了优化工艺参数并进行实验验证.结果表明:PAM-STAMP仿真软件可以预测零件拉深和气胀缺陷,优化了工艺参数和模具形状并进行实验验证.实验在800℃、气体压力2.5 MPa条件下获得了壁厚、侧边高度均符合设计要求的零件,验证了该拉深气胀复合工艺的可行性.
Deep Drawing and Gas Bulging of Precise Hot Forming Process of Complex Box Part
In order to solve the problems of insufficient forming of complex box part in the single deep drawing,a precise hot forming process of deep drawing and gas bulging was proposed,and the shape and thickness of the formed parts could meet the design requirements.TC2 titanium alloy complex box part was selected as the research object in this research.The high temperature formability of TC2 titanium alloy was investigated at 550-800 ℃ and 0.001-0.1 s-1.A set of mold for deep drawing and gas bulging at one time was designed.The forming process of the complex box part was simulated based on the finite element simulation software PAM-STAMP,and the optimized process parameters were obtained and verified by experiments.Results show that the simulation software PAMSTAMP can effectively predict the part defects during deep drawing and gas bulging.The process parameters and mold shape are ameliorated and verified by experiments.Complex box part with thickness and height meeting the design requirements can be obtained under the conditions of 800 ℃ and gas pressure of 2.5 MPa,which verifies the feasibility of the composite process of deep drawing and gas bulging.

TC2 titanium alloyhigh temperature rheological propertiescomposite processnumerical simulation

乔旭东、陈明和、谢兰生

展开 >

南京航空航天大学机电学院,江苏南京 210016

TC2钛合金 高温流变性能 复合工艺 数值模拟

National Natural Science Foundation of China

52375345

2024

稀有金属材料与工程
中国有色金属学会,中国材料研究学会,西北有色金属研究院

稀有金属材料与工程

CSTPCD北大核心
影响因子:0.634
ISSN:1002-185X
年,卷(期):2024.53(6)
  • 26