首页|压缩感知l1-αl2模型下的DCA算法分析

压缩感知l1-αl2模型下的DCA算法分析

扫码查看
在压缩感知领域,对于从少量测量中恢复稀疏向量这个基本的问题,更倾向于相关性尽可能小的测量.然而在现实中利用l1,l2 等传统方法的计算成本较高,因此文章在新模型l1-αl2(0<α≤1)下,利用‖x‖1-α‖x‖2 最小化来解决压缩感知问题,基于凸函数的差分算法,文中得到了求解l1-αl2 极小化问题的迭代算法,并进行了理论分析,证明了该算法收敛于一个满足最优性条件的稳定点.
Analysis of the DCA Algorithm Under the l1-αl2 Model of Compressive Sensing
In the field of compressed sensing,we prefer measurements with as little correlation as possible for the basic problem of re-covering sparse vectors from a small number of measurements.However,in reality,the calculation cost of using such l1,l2 traditional methods is higher.Therefore,in this paper,under the new model l1-αl2(0<α≤1),we use minimization of ‖x‖1-α‖x‖2 to solve the compressed sensing problem.Difference algorithm based on convex function,an iterative algorithm for solving the l1-αl2 minimization problem is obtained in this paper,it is proved that the algorithm converges to a stable point which satisfies the optimality condition.

compressed Sensingl1-αl2 minimizationDCA(Difference of Convex functions Algorithm)

宋儒瑛、吴丽君

展开 >

太原师范学院 数学与统计学院,山西 晋中 030600

压缩感知 l1-αl2最小化 DCA算法

2024

忻州师范学院学报
忻州师范学院

忻州师范学院学报

影响因子:0.186
ISSN:1671-1491
年,卷(期):2024.40(5)