首页|基于生物信息学分析三阴性乳腺癌患者预后相关的关键失巢凋亡基因

基于生物信息学分析三阴性乳腺癌患者预后相关的关键失巢凋亡基因

Analysis of key out of anoikis genes related to prognosis of triple negative breast cancer based on bioinformatics

扫码查看
目的 通过生物信息学方法挖掘乳腺癌中关键失巢凋亡基因,并分析其表达变化及在乳腺癌患者预后预测中的意义.方法 在GEO数据库中下载三阴性乳腺癌芯片数据(GSE113865),利用R语言limma数据包进行差异分析,并与MSigDB数据库的失巢凋亡基因进行交集.DAVID数据库中进行GO和KEGG富集分析.Cytoscape软件获取核心模块和基因.利用LASSO回归性分析筛选关键基因,并在Kaplan Meier plotter与GEPIA数据库中验证其表达及对乳腺癌患者预后的影响.结果 共得到40个乳腺癌失巢凋亡基因,这些基因主要富集在细胞群增殖的正向调节、凋亡过程负向调控蛋白结合、癌症途径、PI3K-Akt等信号通路中.通过LASSO回归分析获取到8个核心的失巢凋亡基因(EZH2、PBK、CAV1、CXCL12、PLAUR、PTGS2、LAMB3及LAMC2),其中6个失巢凋亡基因(EZH2、PBK、PLAUR、CAV1、CXCL12及LAMC2)与乳腺癌患者预后相关.结论 EZH2、PBK、PLAUR、CAV1、CXCL12及LAMC2可能是三阴性乳腺癌预后预测的关键生物标志物.
Objective To explore the expression and significance of key out of anoikis genes in breast cancer by bioinformatics methods,and to stage their expression in breast cancer prognosis. Methods Three negative breast cancer microarray data (GSE113865) was downloaded from GEO database,and R language lima data package was used for difference analysis,and it was intersected with the out of nest apoptosis gene in MSigDB database. Perform GO and KEGG enrichment analysis in the DAVID database. Cytoscape software obtains core modules and genes. The key genes were screened by LASSO regression analysis,and their expression and impact on the prognosis of breast cancer patients were verified in Kaplan Meier plotter and GEPIA databases. Results A total of 40 out of anoikis genes were obtained from breast cancer. These genes were mainly enriched in the positive regulation of cell population proliferation,the negative regulation of protein binding in apoptosis,cancer pathway,PI3K Akt signal pathway and other signal pathways. Eight core out of anoikis genes (EZH2,PBK,CAV1,CXCL12,PLAUR,PTGS2,LAMB3 and LAMC2) were obtained through LASSO regression analysis. Six out of nest apoptotic genes (EZH2,PBK,PLAUR,CAV1,CXCL12 and LAMC2) were associated with the prognosis of breast cancer patients.

Breast cancerAnoikis genesBioinformatics

冯莉莉、樊嘉欣、赵菊梅

展开 >

延安大学延安医学院,陕西 延安 716000

陕西省人民医院,陕西 西安 710000

乳腺癌 失巢凋亡基因 生物信息学

2024

延安大学学报(医学科学版)
延安大学

延安大学学报(医学科学版)

影响因子:0.551
ISSN:1672-2639
年,卷(期):2024.22(4)