首页|一类非线性混合分数阶微分方程系统解的稳定性

一类非线性混合分数阶微分方程系统解的稳定性

扫码查看
研究了一类含Caputo型非线性混合分数阶微分方程耦合系统的边值问题.首先,利用Banach压缩映射原理讨论了该系统解的存在唯一性,并利用Dhage不动点定理研究了该系统解的存在性;然后,研究了该系统解的Ulam-Hyers稳定性、G-Ulam-Hyers稳定性和Ulam-Hyers-Rassia稳定性,并利用算例验证了所得结果的正确性.
The stability of solutions for a class of nonlinear mixed fractional differential equations
The boundary value problem of a class of coupled systems with Caputo type nonlinear mixed fractional differential equations was studied.Firstly,the existence and uniqueness of system solutions were discussed by Banach compression mapping principle,and the existence of system solutions is studied by Dhage fixed point theorem.Then,the Ulam-Hyers stability,G-Ulam-Hyers stability and Ulam-Hyers-Rassia stability of the system solutions were investigated,and the correctness of the obtained results it was verified by numerical examples.

fractional differential equationsBanach contracting mapping principleDhage fixed point theoremstability

葛月英、葛琦

展开 >

延边大学理学院,吉林 延吉 133002

分数阶微分方程 Banach压缩映射原理 Dhage不动点定理 稳定性

吉林省教育厅科学技术研究项目吉林省科技厅项目

JJKH2022527KJ2023010129JC

2024

延边大学学报(自然科学版)
延边大学

延边大学学报(自然科学版)

影响因子:0.388
ISSN:1004-4353
年,卷(期):2024.50(1)