首页|基于矩信息的不确定集下CVaR的定量统计稳健性

基于矩信息的不确定集下CVaR的定量统计稳健性

扫码查看
研究了在最坏情况下CVaR的定量统计稳健性.首先,推导出了 CVaR关于随机向量是Lipschitz的;其次,证明了在Kantorovich度量下,分布不确定集在某一确定点附近是局部Lipschitz的,由此得出分布式鲁棒CVaR模型的最优值函数满足Lipschitz连续性;最后,在最坏情况下推导出了 CVaR的定量统计稳健性.
Quantitative statistical robustness of conditional value at risk with moment-based uncertainty set
The quantitative statistical robustness of conditional value at risk(CVaR)in the worst-case is studied.Firstly,CVaR is Lipschitz with random vectors.Secondly,the distribution uncertainty set is locally Lipschitz near a certain point under the Kantorovich metric,thereby the optimal value function of the distributed robust CVaR model satisfies Lipschitz continuity.Finally,the quantitative statistical robustness of the worst-case CVaR is derived.

robust risk measureuncertainty setquantitative statistical robustnessconditional value at risk

刘兆萌、韩有攀

展开 >

西安工程大学理学院,西安 710600

鲁棒风险度量 不确定集 定量统计稳健性 条件风险价值

国家自然科学基金陕西省自然科学基金

115014342023-JC-YB-063

2024

延边大学学报(自然科学版)
延边大学

延边大学学报(自然科学版)

影响因子:0.388
ISSN:1004-4353
年,卷(期):2024.50(2)