首页|基于人工神经网络的高血压预测模型

基于人工神经网络的高血压预测模型

扫码查看
为准确预测高血压患者,文章提出了一种基于人工神经网络(artificial neural network,ANN)的高血压预测模型.该模型在原始的ANN模型中引入了批归一化层(batch normalization,BN)和残差连接(residual connection),以改进原始ANN模型所存在的缺陷.实验表明,该模型的收敛速度显著高于原始模型,且可有效加快模型的训练过程.研究结果可为高血压的早期预测和干预提供参考.
Hypertension prediction model based on artificial neural network
In order to accurately predict patients with hypertension,the article proposes a hypertension prediction model based on artificial neural network,(artificial neural network,ANN).This model introduces a batch normalization layer(batch normalization,BN)into the original ANN model,and residual connection to improve the defects of the original ANN.Experiments show that the convergence speed of this model is significantly higher than that of the original model,and it can effectively speed up the training process of the model.The results can be used for the treatment of hypertension and provide reference for early prediction and intervention.

hypertensionprediction modelartificial neural networkauxiliary diagnosisbatch normalizationresidual connection

任金闿、吴钊和、高景琦、郑云鹤、文正洙

展开 >

延边大学工学院,吉林 延吉 133002

延边大学护理学院,吉林 延吉 133002

高血压 预测模型 人工神经网络 辅助诊断 批归一化层 残差连接

2024

延边大学学报(自然科学版)
延边大学

延边大学学报(自然科学版)

影响因子:0.388
ISSN:1004-4353
年,卷(期):2024.50(2)