首页|改进Smaller VGGNet的细粒度汽车图像分类算法

改进Smaller VGGNet的细粒度汽车图像分类算法

扫码查看
为了提高细粒度车辆图像分类的准确度,提出了一种基于改进Smaller VGGNet的细粒度汽车图像分类算法模型.首先,重新调整了神经网络结构,以此提高训练的稳定性和分类的准确率;其次,替换特征的填充方式,以更好地捕捉局部信息,减缓过拟合现象;最后,利用ELU替换原有的ReLU激活函数,以加快模型收敛速度.在公开数据集上,将改进后模型与现有的 6 种图像分类算法进行对此.结果表明,改进后模型的细粒度汽车图像分类效果显著,且在训练过程表现出更好的稳定性.研究结果可为同类问题解决提供借鉴.
Fine-grained vehicle image classification algorithm based on improved Smaller VGGNet
To improve the ability of vehicle category information recognition and analysis in the field of intelligent transportation,a fine-grained vehicle image classification algorithm model based on improved SmallerVGGNet is proposed.The model first readjusted the neural network structure to improve training stability and classification accuracy.Secondly,replace the filling method of features to better capture local information and alleviate overfitting.Finally,ELU is used to replace the original ReLU activation function to accelerate the convergence speed of the model.On a publicly available dataset,the improved model with six existing image classification algorithms were compared,experimental results show that the improved algorithm outperforms significantly the compared algorithms and exhibits better stability during the training process.

intelligent transportationvehicle image classificationfine-grainedSmallerVGGNetneural network

骆绍烨、林子洋、龙秋华、林俊武、黄佳燕

展开 >

莆田学院 新工科产业学院,福建 莆田 351100

智能交通 汽车图像分类 细粒度 Smaller VGGNet 神经网络

2024

延边大学学报(自然科学版)
延边大学

延边大学学报(自然科学版)

影响因子:0.388
ISSN:1004-4353
年,卷(期):2024.50(3)