首页|基于生物信息学对肺腺癌核心基因的预测及验证

基于生物信息学对肺腺癌核心基因的预测及验证

扫码查看
目的:基于生物信息学对肺腺癌核心基因进行预测及验证.方法:采用GEO数据库收集肺腺癌数据集,采用R软件处理,收集36例肺腺癌患者的肿瘤组织样本及邻近正常肺组织样本并验证表达水平.结果:差异表达基因主要富集于卷曲结合、糖胺聚糖结合、肝素结合和细胞外基质结构成分,Wnt信号通路、ecm-受体相互作用、肿瘤蛋白多糖三条通路与之密切相关.7个核心基因中,5个基因的表达水平具有统计学意义,分别是PPBP、ADRA1B、CDCA8、CENPA和NMUR1.结论:PPBP、ADRA1B、CDCA8、CENPA和NMUR1基因可能是肺腺癌潜在生物标志物.
Prediction and validation of core genes of lung adenocarcinoma based on bioinformatics
Objectives:To predict and validate the core genes of lung adenocarcinoma based on bioinformatics.Methods:GEO database was used to collect the lung adenocarcinoma dataset,and R software was used to process it.Tumor tissue samples and adjacent normal lung tissue samples of 36 patients with lung adenocarcinoma were collected and the expression level was verified.Results:The differentially expressed genes were mainly enriched in coil binding,glycosaminoglycan binding,heparin binding and extracellular matrix structural components,and were closely related to three pathways,Wnt signaling pathway,ECM-receptor interaction and tumor proteoglycan pathway.Among the seven core genes,the expression levels of five genes were statistically significant,namely PPBP,ADRA1B,CDCA8,CENPA and NMUR1.Conclusions:PPBP,ADRA1B,CDCA8,CENPA and NMUR 1 genes may be potential biomarkers of lung adenocarcinoma.

lung adenocarcinomabioinformaticsGEO databasedifferentially expressed genes

蒋翔、黄奕婵、陈少婷、谢文俊

展开 >

厦门市海沧医院检验科,福建 厦门 361000

福建医科大学基础医学院免疫学系,福建 福州 350001

福建省立医院检验科,福建 福州 350001

肺腺癌 生物信息学 GEO数据库 差异表达基因

福建医科大学启航基金项目

2019QH1166

2024

延边大学医学学报
延边大学

延边大学医学学报

影响因子:0.308
ISSN:1000-1824
年,卷(期):2024.47(3)