首页|PSO-ICA算法在钻井井场噪声处理中的应用

PSO-ICA算法在钻井井场噪声处理中的应用

Application of PSO-ICA Algorithm in Drilling Well Site Noise Processing

扫码查看
井场噪声主要来源于钻井井场的各类设备,对各种测量仪器的正常使用产生了严重影响.为了降低井场噪声对测井仪器和测量系统的影响,基于现有的关于井场噪声统计特性的研究,采用一种基于粒子群优化(Particle Swarm Optimization,PSO)的独立分量分析(Independent Component Analysis,ICA)算法来处理井场噪声.ICA算法是一种基于统计特性角度的信号处理技术,能够实现信号分离,对噪声处理具有一定的可行性.通过采用POS算法,自适应地调整粒子群的速度和位置,以更广泛地搜索解空间,从而更精确地确定各类噪声的权重.仿真结果表明,PSO-ICA算法能够有效分离出各类噪声,并对每种噪声所占的权重值进行优化.
The noise at the well site mainly comes from various equipment at the drilling site,which seriously affects various measuring instruments.In order to reduce the impact of well site noise on logging instruments and meas-urement systems,an Independent Component Analysis(ICA)algorithm based on Particle Swarm Optimization(PSO)is adopted to process well site noise based on existing research on the statistical characteristics of well site noise.ICA algo-rithm is a signal processing technique based on statistical characteristics,which can achieve signal separation and has certain feasibility in noise processing.By using the POS algorithm,the speed and position of the particle swarm can be adaptively adjusted to search the solution space more widely,thereby more accurately determining the weights of various types of noise.The simulation results show that the PSO-ICA algorithm can effectively separate various types of noise and optimize the weight values of each type of noise.

well site noiseICAPSO

梁驰、谢勋兰、刘童辉

展开 >

西安石油大学 电子工程学院,陕西西安 710065

井场噪声 独立分量分析 粒子群优化

2024

仪表技术
上海市仪器仪表学会,上海仪器仪表研究所等

仪表技术

影响因子:0.217
ISSN:1006-2394
年,卷(期):2024.(2)
  • 11