首页|电力变压器故障数据特征提取方法研究

电力变压器故障数据特征提取方法研究

扫码查看
基于油中溶解气体分析(DGA)的电力变压器机器学习故障诊断方法是目前电力变压器故障诊断的主流方法,但这种方法存在故障特征数据维度高、非线性特征显著、信息冗余以及参数寻优等问题,会影响故障诊断的准确率.采用核主成分分析法(KPCA)来提取特征参量,能有效消除冗余信息并降低数据维度.通过对比特征提取前后模型的分类准确率及模型的运行时间,凸显了特征提取方法的有效性,验证了特征提取后故障特征数据集对提高机器学习模型故障分类准确率及分类效率的实际效果.KPCA的优越性对发现电力变压器潜在故障、及时消除潜在威胁、保证电力变压器安全稳定运行,以及维持电网高效可靠供电具有重要意义.
Research on Feature Extraction Methods for Fault Data of Power Transformers
The machine learning fault diagnosis method for power transformers based on dissolved gas analysis in oil(DGA)is currently the mainstream method for fault diagnosis of power transformers.However,this method has problems such as high dimensionality of fault feature data,significant nonlinear features,information redundancy,and parameter optimization,which can affect the accuracy of fault diagnosis.Using kernel principal component analysis(KPCA)to ex-tract feature parameters can effectively eliminate redundant information and reduce data dimensions.By comparing the classification accuracy and running time of the model before and after feature extraction,the effectiveness of the feature extraction method was highlighted,and the actual effect of the fault feature dataset after feature extraction on improving the accuracy and efficiency of machine learning model fault classification was verified.The superiority of KPCA is of great significance for discovering potential faults in power transformers,timely cutting off potential threats,ensuring the safe and stable operation of power transformers,and maintaining efficient and reliable power supply in the power grid.

power transformerdata extractionfault diagnosisKPCA

叶尚兴、徐非非、吴一庆、熊雪君、陈辉、江友华

展开 >

国网浙江省电力有限公司 丽水供电公司,浙江 丽水 323000

杭州钱江电气集团股份 有限公司,浙江 杭州 311241

华东电力试验研究院有限公司,上海 200437

安徽理工大学,安徽 淮南 232001

上海电力大学,上海 201306

展开 >

电力变压器 数据提取 故障诊断 核主成分分析法

2024

仪表技术
上海市仪器仪表学会,上海仪器仪表研究所等

仪表技术

影响因子:0.217
ISSN:1006-2394
年,卷(期):2024.(4)
  • 3