首页|基于概率运动基元的移动机器人轨迹学习与避障算法研究

基于概率运动基元的移动机器人轨迹学习与避障算法研究

Research on Trajectory Learning and Obstacle Avoidance Algorithms for Mobile Robots Based on Probabilistic Motion Primitives

扫码查看
示教学习在移动机器人的路径规划中展现出潜力,但将其直接应用于三维空间时,常面临效率低下、障碍物碰撞等挑战.提出了一种基于概率运动基元建模的移动机器人三维路径规划方法.通过简化速度信息,对示教路径点的时域坐标建模,实现了高效在线规划,并借助条件高斯计算提升路径准确性.设计了避障算法,利用障碍物信息赋予路径偏置值,结合一阶系统吸引点模型,确保路径平滑避障.实验验证表明,该模型在三维空间中规划效果良好,时间成本低,且避障算法有效,为移动机器人在复杂环境中的自主导航提供了新思路.
Demonstration learning has shown potential in path planning for mobile robots,but when it is directly applied to three-dimensional space,it often faces challenges such as low efficiency and obstacle collisions.A three-dimensional path planning method for mobile robots based on probabilistic motion element modeling is proposed.By simplifying speed information and modeling the time-domain coordinates of teaching path points,efficient online planning has been achieved,and path accuracy has been improved through conditional Gaussian calculation.An obstacle avoid-ance algorithm that utilizes obstacle information to assign path bias values,combined with a first-order system attraction point model is designed to ensure smooth obstacle avoidance along the path.Experimental verification shows that the model has good planning effect in three-dimensional space,low time cost,and effective obstacle avoidance algorithm,providing a new idea for autonomous navigation of mobile robots in complex environments.

ProMPpath planningconditional Gaussian calculationsgeneralized path obstacle avoidance3D simulation

罗济雨、孙丙宇

展开 >

中国科学院 合肥物质科学研究院,安徽 合肥 230031

中国科学技术大学,安徽 合肥 230026

概率运动基元 路径规划 条件高斯计算 泛化路径避障 三维仿真

2024

仪表技术
上海市仪器仪表学会,上海仪器仪表研究所等

仪表技术

影响因子:0.217
ISSN:1006-2394
年,卷(期):2024.(5)