首页|两级融合的多传感器数据融合算法研究

两级融合的多传感器数据融合算法研究

扫码查看
针对智慧工厂监测环境中多源数据融合精度问题,提出了一种两级融合的多传感器数据融合方法,旨在提高多源数据融合的准确性和可靠性.该方法分为一级数据融合和二级决策融合,首先采用卡尔曼滤波结合自适应加权平均对同类型传感器进行数据降噪融合处理,其次利用人工兔优化算法(ARO)优化ELM神经网络进行决策融合.实验结果表明,基于ARO优化ELM神经网络的多传感器数据融合算法在融合精度方面优于其他先进算法.经验证,所提出的两级融合多传感器数据融合方法具有更好的融合性能,有效提升感知系统的可靠性和鲁棒性,实现更加准确和可靠的监测和预测.
Two-tier Fusion-based Multi-sensor Data Fusion Algorithm Research
In response to the accuracy issue in multi-source data fusion for smart factory monitoring environments,a two-tier fusion-based multi-sensor data fusion method was proposed to enhance the accuracy and reliability of multi-source data fusion.The method consists of a primary data fusion stage and a secondary decision fusion stage.Firstly,a combination of Kalman filte-ring and adaptive weighted averaging is employed to denoise and fuse data from sensors of the same type.Subsequently,the artifi-cial rabbit optimization(ARO)algorithm was utilized to optimize the extreme learning machine(ELM)neural network for deci-sion fusion.Experimental results demonstrate that the ARO-ELM-based multi-sensor data fusion algorithm outperforms other ad-vanced algorithms in terms of fusion accuracy.After verification,the proposed two-tier fusion-based multi-sensor data fusion scheme has superior fusion performance,effectively enhancing the reliability and robustness of the perception system,thereby ena-bling more accurate and reliable monitoring and prediction.

multi-sensor data fusionKalman filteradaptive weighted averagingartificial rabbits optimizationELM neural net-work

彭道刚、段睿杰、王丹豪

展开 >

上海电力大学自动化工程学院,上海发电过程智能管控工程技术研究中心

多传感器数据融合 卡尔曼滤波 自适应加权平均 人工兔优化算法 ELM神经网络

上海市"科技创新行动计划"高新技术领域项目

22511103800

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(1)
  • 6