首页|基于改进麻雀搜索算法的广义预测控制参数整定

基于改进麻雀搜索算法的广义预测控制参数整定

扫码查看
针对多输入多输出(MIMO)的变风量空调(VAV)系统,提出一种基于改进麻雀搜索算法(ISSA)的广义预测控制(GPC)参数整定方法.首先,针对GPC控制器众多参数和系统性能之间关系复杂且难以同时整定的问题,提出通过麻雀搜索算法(SSA)进行参数整定以提高控制系统的性能指标.其次,针对传统SSA在适应度函数较复杂时存在收敛周期较长的问题,提出一种基于非线性增减种群规模的ISSA以缩短算法的收敛周期.同时,引入事件触发机制(ETM)避免ISSA算法陷入局部最优.最后,通过半实物实验平台验证了所提算法的有效性和鲁棒性.实验结果表明,与传统的SSA算法相比,ISSA收敛时间可减少18.61%,并且通过ISSA进行参数整定后GPC控制系统的调节时间可分别减少87.5%、90%.
Parameter Tuning of Generalized Predictive Control Based on Improved Sparrow Search Algorithm
For variable air volume air-conditioning(VAV)system with multiple input multiple output(MIMO),a generalized predictive control(GPC)parameters tuning method based on improved sparrow search algorithm(ISSA)was proposed.Firstly,aiming at the complicated relationship between many parameters of GPC controller and system performance,sparrow search algo-rithm(SSA)was used for parameter tuning to improve the performance of the control system.Secondly,aiming at the problem that traditional SSA has a long convergence period when the fitness function is relatively complex,an ISSA algorithm based on nonlinear population size increase and decrease was proposed to shorten the convergence period of the algorithm.At the same time,the event-triggered mechanism(ETM)was introduced to avoid triggering the ISSA algorithm into local optimality.Finally,the effectiveness and robustness of the proposed algorithm was verified by a semi-physical experiment platform.Experimental results show that,compared with the traditional SSA algorithm,ISSA convergence time can be reduced by 18.61%,and the adjustment time of GPC control system can be reduced by 87.5%and 90%after parameter tuning by ISSA.

variable air volume conditioninggeneralized predictive controlsparrow search algorithmparameter tuningevent trig-gered mechanism

贺宁、郝文斌、李尚

展开 >

西安建筑科技大学机电工程学院

变风量空调 广义预测控制 麻雀搜索算法 参数整定 事件触发机制

国家自然科学基金资助项目中国博士后面上基金项目陕西省重点研发计划项目

619032912019M6602572022NY-094

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(1)
  • 15