首页|基于改进WOA-BP神经网络的网格化空气质量监测仪数据修正

基于改进WOA-BP神经网络的网格化空气质量监测仪数据修正

扫码查看
空气污染严重威胁人类健康,近年来逐渐兴起的基于传感器技术的微型空气监测仪(简称微型站)具有体积小、造价低的优点,符合当前网格化、精细化的空气质量管理模式.但微型站中使用的电化学传感器存在复杂的气体交叉干扰,影响设备的准确性.针对交叉干扰非线性,难以用明确的数学表达式描述的问题,提出将改进鲸鱼算法优化的反向传播(CIWOA-BP)神经网络应用于微型站数据的修正.CIWOA-BP算法结合了BP神经网络善于处理非线性黑箱问题的优势以及CIWOA全局寻优的能力.结果表明:经过CIWOA-BP修正后的微型站可以实现对混合气体中的NO2、CO、O3 和SO2 的准确定量分析,4 种气体的计算值和实际值之间的拟合优度(R2)均超过了 0.97,效果优于一元、多元线性回归和传统的BP神经网络,可以很好地提升设备对空气污染物的监测精度.
Data Correction of Grid Air Quality Monitor Based on CIWOA-BP Neural Network
Air pollution is a serious threat to human health.In recent years,the miniature air quality monitor based on sensor technology(referred to as miniature monitoring station)has the advantages of small size and low cost,which conforms to the cur-rent grid and refined air quality management mode.However,the electrochemical sensors used in this device have complex gas cross-interference,which greatly affects the accuracy of its test.Aiming at the problem that the cross-interference is nonlinear and difficult to be described by explicit mathematical expressions,a chaotic mapping adaptive inertia weight whale optimization algo-rithm optimized back propagation(CIWOA-BP)neural network model was applied for the data correction of the miniature moni-toring station.The CIWOA-BP algorithm combined the advantages of BP neural network that is good at dealing with nonlinear black box problems with the ability of CIWOA for seeking global optimization.The results show that the miniature monitoring sta-tion corrected by CIWOA-BP can realize accurate quantitative analysis of NO2,CO,O3 and SO2 in gas mixture,and the goodness of fit(R2)between the calculated values and actual values of these four gases is more than 0.97.Moreover,the performance of this method is superior to that of sample,multiple linear regression and traditional BP neural network,which can effectively im-prove the monitoring accuracy of device for air pollutants.

grid air quality monitorminiature monitoring stationCIWOABP neural networkelectrochemical sensorsgas cross-interference

闫续、张国城、冯端、田莹、沈上圯、杨振琪、董谋、赵红达

展开 >

北京市计量检测科学研究院/国家生态环境监测治理产品质量监督检验中心(北京)

北京师范大学物理学系

网格化空气质量监测仪 微型站 改进鲸鱼算法 BP神经网络 电化学传感器 气体交叉干扰

北京市科委"首都蓝天行动培育"项目

Z181100005418010

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(2)
  • 16