首页|改进海马优化算法的永磁同步电机多参数辨识

改进海马优化算法的永磁同步电机多参数辨识

扫码查看
为解决永磁同步电机参数辨识速度慢、精度不足等问题,提出一种融合云模型和混沌变异的海马优化算法.该算法以海马优化算法为基础,引入混沌映射和随机反向学习策略,改善种群初始空间分布;采用自适应云模型,解决算法收敛精度低和减少陷入局部最优情况;加入混沌映射和高斯变异调节种群分布,以提高算法全局和局部开发能力.通过采集电机电压、角速度等信息,在永磁同步电机辨识模型中,使用改进后的算法对电机参数进行辨识.由仿真和实验对比,验证改进后算法在永磁同步电机电气和机械参数辨识上,具有更快速、稳定和准确的辨识效果,且辨识误差均在1.4%以内.
Multi-parameter Identification of Permanent Magnet Synchronous Motor with Improved Sea-horse Optimization Algorithm
To address the slow speed and lack of accuracy in the parameter identification of permanent magnet synchronous mo-tor(PMSM),a sea-horse optimization algorithm integrating cloud model and chaotic variation was proposed.Based on the sea-horse optimization algorithm,the algorithm introduced chaotic mapping and stochastic inverse learning strategy to improve the initial spa-tial distribution of the population.The adaptive cloud model was adopted to solve the low convergence accuracy of the algorithm and reduce the falling into the local optimum;Chaotic mapping and Gaussian variation were incorporated to regulate the distribution of the population in order to improve the algorithm's global and local development capability.By collecting the information of motor voltage and angular velocity,using the improved algorithm to identify the motor parameters in the PMSM identification model.From the simulation and experimental comparison,it is verified that the improved algorithm has a faster,more stable,and accurate recogni-tion effect in the recognition of electrical and mechanical parameters of PMSM,and the recognition errors are all within 1.4%.

permanent magnet synchronous motorparameter identificationsea-horse optimizeradaptive cloud modelchaotic mappingGaussian variation

曹永娟、陆壮壮、蔡骏、贾红云

展开 >

南京信息工程大学自动化学院,江苏省大气环境与装备技术协同中心

永磁同步电机 参数辨识 海马优化算法 自适应云模型 混沌映射 高斯变异

国家自然科学基金项目

52077105

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(2)
  • 15