首页|基于IWOA-ELM的模拟电路故障诊断方法

基于IWOA-ELM的模拟电路故障诊断方法

扫码查看
针对模拟电路故障诊断中非线性和高维度输出信号带来的诊断困难问题,提出一种基于改进鲸鱼算法(IWOA)优化极限学习机(ELM)的模拟电路故障诊断方法.首先,采用主成分分析(PCA)法对初始故障电路特征进行降维;其次,在鲸鱼算法的基础上引入Tent映射来初始化种群,并且加入了非线性时变因子、自适应权重以及随机差分变异策略;再利用改进后的鲸鱼算法对ELM进行优化;最后将降维后的故障特征向量输入ELM中得到故障诊断结果.通过Sallen-Key带通滤波器电路以及CSTV滤波器电路仿真测试实例表明:IWOA优化ELM的故障诊断方法具有更优的故障诊断性能,故障诊断准确率高达99.41%.
Analog Circuit Fault Diagnosis Method Based on IWOA-ELM
Aiming at the hard problem of consciousness caused by nonlinear and high latitude output signals in analog circuit fault diagnosis,an analog circuit fault diagnosis method based on improved whale algorithm(IWOA)optimized extreme learning machine(ELM)was proposed.Firstly,principal component analysis(PCA)was used to reduce the dimensionality of initial fault circuit features;Secondly,based on the whale algorithm,a Tent map was introduced to initialize the population,and nonlinear time-varying factors,adaptive weights and random differential mutation strategies were added.Then the improved whale algorithm was reused to optimize ELM;Finally,the dimensionality reduced fault feature vectors were input into ELM to obtain the fault diag-nosis results.The simulation test examples of Sallen-Key bandpass filter circuit and CSTV filter circuit show that IWOA optimized ELM fault diagnosis method has better fault diagnosis performance with a fault diagnosis accuracy of up to 99.41%.

analog circuitsfault diagnosisfeature extractionprincipal component analysislimit learning machinewhale algorithm

游达章、刘姗、张业鹏、李存靖

展开 >

湖北工业大学机械工程学院

湖北省现代制造质量工程重点实验室

湖北三六一一应急装备有限公司

模拟电路 故障诊断 特征提取 主成分分析 极限学习机 鲸鱼算法

国家自然科学基金

51875180

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(2)
  • 21