首页|基于RSM和GWO-BP混合代理模型的三维车削力传感器开孔位置多目标优化设计

基于RSM和GWO-BP混合代理模型的三维车削力传感器开孔位置多目标优化设计

扫码查看
智能数控车床的研制需要配备智能化的切削力传感器,通过实时监控切削过程中切削力的变化,及时掌握工件和刀具的切削状态,文中针对十角环切削力传感器灵敏度不高(桥臂应力过小)的缺点,采用在环臂开通孔的方式提高局部应力进而得到高灵敏度的传感器.为得到最佳开孔位置,采用中心CL2 偏差小(CL2=0.028)的最佳空间填充法对位置参数进行高维空间采样,对比 2 种模型各自的优势,以传感器的变形量、固有频率和路径应力为优化目标构造了RSM和GWO-BP 的混合代理模型,对比不同算法的Pareto前沿、IGD和HV,确定选择SparseEA对混合代理模型进行多目标优化.优化后的传感器:变形量增加14.7%,等效应力增加155%,3 个方向的灵敏度提升6 倍左右.
Multi-objective Optimization Design of Opening Position for 3D Turning Force Sensor Based on RSM and GWO-BP Hybrid Agent Model
The development of an intelligent CNC lathe requires the integration of an intelligent cutting force sensor to effec-tively monitor the real-time changes in cutting force during the cutting process and promptly assess the cutting status of the work-piece and tool.In this paper,aiming at the shortcomings of the sensitivity of the ten-angle ring cutting force sensor(bridge arm stress is too small),an approach involving opening a hole in the ring arm was employed to enhance the local stress within the structure.To determine the optimal position for the opening,a high-dimensional parameter space was sampled using the optimal space filling method,with a small deviation of the center CL2 value(CL2 =0.028).Compare the advantages of each of the two models,a hybrid agent model,combining RSM and GWO-BP,was constructed.The deformation,intrinsic frequency,and path stress of the sensor were considered as optimization objectives.To select the most suitable algorithm for multi-objective optimiza-tion of the hybrid agent model,the Pareto front,IGD,and HV of different algorithms were compared.SparseEA was chosen as the preferred algorithm for the multi-objective optimization.The optimized sensor exhibits a 14.7%increase in deformation and a sig-nificant 155%increase in local stress,about six times greater sensitivity in all three directions.

neural networkPareto frontierturning force sensormuti-objective optimizationcenter CL2 deviation

韩继科、王鹏、张昌明、戴裕强

展开 >

陕西理工大学机械工程学院

陕西省工业自动化重点实验室

神经网络 Pareto前沿 车削力传感器 多目标优化 中心CL2偏差

陕西省秦创原科学家+工程师项目陕西省重点产业链项目陕西省重点研发计划

2022KXJ-1392023-ZDLGY-282021GY-348

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(3)
  • 16